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Diffuse reflection boundary conditions are introduced in a thermal lattice Boltzmann model to allow for
variable fluid density and temperature along the walls. The capability of this model to capture the main
characteristics of the thermal transpiration phenomenon in a box at nonvanishing Knudsen numbers is dem-
onstrated. The thermal creep velocity is found to be proportional to the temperature gradient imposed at the
wall, whereas the accuracy of the simulation results are found to be of first or second order, depending on the
numerical scheme.
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I. INTRODUCTION

Gas creeping from cold toward hot may start in a channel
where a tangential temperature gradient �T /�s is imposed
along the walls �1�. This is the so-called transpiration phe-
nomenon and is observed in rarefied gases when the Knud-
sen number Kn=� /h, expressed as the ratio between the
mean free path � and the characteristic size h of the channel,
is no longer negligible. The creep velocity uc is found to be
proportional to �T /�s

uc =
3

4

�R

P

�T

�s
. �1�

Here, � is the dynamic viscosity of the fluid, R is the ideal
gas constant and P is the local pressure �1�.

Because of their particulate nature, traditional tools used
to simulate fluid physics at non-negligible values of the
Knudsen number, like molecular dynamics �MD� or direct
simulation Monte Carlo �DSMC�, need huge memory and
computing time that can easily exceed the capacity of today’s
supercomputers �2–5�. Lattice Boltzmann �LB� models use
distribution functions instead of particles �6� and provide a
mesoscopic level alternative to both particulate methods, as
well as to standard techniques of computational fluid dynam-
ics �CFD� derived from the principles of continuum media
mechanics. The use of LB models to investigate flow phe-
nomena at non-negligible Knudsen numbers has received
considerable attention in recent time �7� due to increasing
need for simulation of fluid flow at two extreme scales: high-
altitude aerodynamics and micro- or nanosize devices known
as microelectromechanical systems �MEMS�. Unfortunately,
the majority of LB applications developed up to date for
non-negligible Knudsen number refer to the isothermal case.
In this paper, we approach the thermal transpiration phenom-
enon using the two-dimensional LB model of Watari and
Tsutahara �8�, which allows us to investigate fluid flow with
variable temperature.

II. DESCRIPTION OF THE MODEL

The thermal LB model �8� uses 33 velocity vectors

e00 = 0

eki = �cos
��i − 1�

4
, sin

��i − 1�
4

�ck

k = 1, . . . 4, i = 1, . . . 8. �2�

The values of the speeds ck �k=1, . . .4�

�ck� = �1.0,1.92,2.99,4.49� �3�

were determined in �8� to ensure the stability of this model
within the largest possible temperature range �0.4���1.6�.
The corresponding distribution functions fki= fki�x , t� evolve
according to the LB equations

�t fki + eki · �fki = −
1

�
�fki − fki

eq� �4�

and the local values of the fluid density n=n�x , t�, velocity
u=u�x , t�, and temperature �=��x , t� are defined as follows:

n = f00 + 	
k=1

4

	
i=1

8

fki, �5�

nu = 	
k=1

4

	
i=1

8

fkieki, �6�

n
� +
1

2
u2� = 	

k=1

4

	
i=1

8
1

2
fkick

2. �7�

The density-dependent relaxation time �=	 /nc̄, where
	=1.0
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c̄ =

	
k=1

4

ck	
i=1

8

fki

f00 + 	
k=1

4

	
i=1

8

fki

�8�

is the average speed of fluid particles, enables us to achieve
various values of the local Knudsen number Kn=	 /n �9�.
The equilibrium distribution functions �8�

fki
eq = fki

eq�x,t� = nFkski �9�

are expressed using the series expansion ski=ski�� ,u� up to
fourth order with respect to the local fluid velocity u, which

has the Cartesian components u�, �=1,2 �summation over
repeated Greek indices is understood�,

ski = 
1 −
u2

2�
+

u4

8�2� +
1

�

1 −

u2

2�
�eki�u� +

1

2�2



1 −
u2

2�
�eki�eki
u�u
 +

1

6�3eki�eki
eki�u�u
u�

+
1

24�4eki�eki
eki�eki�u�u
u�u�. �10�

The weight functions Fk=Fk��� that appear in Eq. �9� are
given by

Fk =
1

ck
2�ck

2 − c�k+1�
2 ��ck

2 − c�k+2�
2 ��ck

2 − c�k+3�
2 �

�48�4 − 6�c�k+1�
2 + c�k+2�

2 + c�k+3�
2 ��3 + �c�k+1�

2 c�k+2�
2 + c�k+2�

2 c�k+3�
2 + c�k+3�

2 c�k+1�
2 ��2

−
c�k+1�

2 c�k+2�
2 c�k+3�

2 �

4
�

F0 = 1 − 8�F1 + F2 + F3 + F4� , �11�

where we used the notation �l=1,2 ,3�

�k + l� = �k + l, k + l � 4

k + l − 4, k + l � 4.
�12�

We refer the reader to the literature for further details on the
thermal LB model �8,9�.

III. BOUNDARY CONDITIONS

Appropriate boundary conditions are introduced to allow
the general case when the prescribed temperature may vary
along the wall. These boundary conditions are derived using
the concept of diffuse reflection, which dates back to the
time of Maxwell and Smoluchowski �3,9–11�. For this pur-
pose, the thermalization process is decoupled and the distri-
bution functions whose velocities point normal to the wall
mix separately from the distribution functions corresponding
to velocities orientated along the diagonal of the square lat-
tice. Unlike the procedure introduced in �9�, this one allows
also the fluid density to evolve freely along the walls.

For convenience, we restrict ourselves to the description
of the diffuse reflection boundary conditions in the lattice
nodes near the lower left corner of a box �Fig. 1�. The mixing
points �i.e., the black squares in Fig. 1� are located on the
wall moving with velocity uW and may have different tem-
peratures �W

j,l. In these points, the fluid density �W
j,l is allowed

to evolve freely. Appropriate boundary conditions are needed
to compute the values of the following distribution functions
fki

jl defined in the ghost nodes �j , l� near the lower left corner
in Fig. 1 �k=1, . . .4�:

fk8
0,2, fk2

0,1, fk1
0,1, fk2

0,0, fk3
1,0, fk2

1,0, fk4
2,0. �13�

Similar procedures may be used to compute the values of the
distribution functions in the remaining ghost nodes outside
the box.

The requirement that the distribution functions follow the
Maxwellian distribution law at the mixing points on the left
wall reads �k=1, . . .4, l=1,2 , . . .�

fk1
0,l + fk1

1,l

Fk��W
1/2,l�sk1��W

1/2,l,uW�
= 2�W

1/2,l �14a�

FIG. 1. Diffuse reflection boundary conditions near the lower
left corner of a box: •=bulk nodes, �=boundary nodes, �=ghost
nodes, �=wall points where the distribution functions fki

jl follow the
Maxwellian distribution law.
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fk2
0,l + fk2

1,l+1

Fk��W
1/2,l+1/2�sk2��W

1/2,l+1/2,uW�
=

fk8
0,l+1 + fk8

1,l

Fk��W
1/2,l+1/2�sk8��W

1/2,l+1/2,uW�

= 2�W
1/2,l+1/2. �14b�

Since ��0, one can easily see that the denominators in the
equations above never vanish. Equations �14�, together with
the requirements that there is no mass flux perpendicular to
the wall in the mixing nodes

	
k=1

4

ckfk5
1,l = 	

k=1

4

ckfk1
0,l �15a�

	
k=1

4

ck�fk4
1,l + fk6

1,l+1� = 	
k=1

4

ck�fk2
0,l + fk8

0,l+1� , �15b�

may be solved to get the values of the distribution functions
in the ghost nodes �0, l� and �0, l+1� after each time step.
Similar equations may be introduced in order to compute the
values of fk3

j,0, fk2
j,0, fk4

j+1,0 �k=1, . . .4 , j=1,2 , . . . �. The follow-
ing relations will be used to compute the values of the dis-
tribution functions fk2

0,0 �k=1, . . .4�:

fk2
0,0 + fk2

1,1

Fk��W
1/2,1/2�sk2��W

1/2,1/2,uW�
= 2�W

1/2,1/2, �16a�

	
k=1

4

ckfk6
1,1 = 	

k=1

4

ckfk2
0,0. �16b�

Since the nondimensionalized speeds in the thermal LB
model are no longer related to lattice spacing, as in standard
LB models �6�, finite difference schemes need to be used to
evolve the distribution functions in each lattice nodes �8,9�.
Besides the first order upwind scheme widely used to com-
pute the gradient operator in the LB evolution equations �9�,
we considered also second order numerical schemes like the
monitorized central difference �MCD� flux limiter �12� or the
weighted essentially nonoscillatory �WENO� scheme �13�.
These schemes were used to improve numerical accuracy in
the bulk nodes �marked •� in Fig. 1. The first-order upwind
scheme was always used to evolve the distribution functions
in the boundary nodes �marked �� in Fig. 1, which are adja-
cent to the walls and subjected to the diffuse reflection
boundary conditions introduced above.

IV. COMPUTER SIMULATION RESULTS

To investigate the capability of our improved boundary
conditions to capture the thermal transpiration phenomenon,
we considered the simplest case of a gas in a two-
dimensional �2D� box at rest �Fig. 2�. No external forces
�such as gravity� are acting on the gas. For convenience, we
set L=2 �in nondimensionalized units� and h /L=0.1. Wall
temperatures are constant at the left �Tleft� and right �Tright�
ends of the box and change linearly along the horizontal
walls, for x� �L /4 ,3L /4�.

Computer simulations were done on a 200
20 lattice
using the three numerical schemes mentioned previously

�first order upwind, MCD flux limiter and WENO�. At t=0,
the box was always filled with gas at rest, of temperature T
= �Tleft+Tright� /2=1.0 and mean density n̄ with 0.1% fluctua-
tions. In all cases, we performed 500 000 iterations with time
step �t=10−4 to ensure the stationary flow state.

Figure 3 shows the stationary velocity field recovered us-
ing the WENO scheme, for n̄=108 and the following values
of the nondimensionalized wall temperatures: Tleft=0.90,
Tright=1.10. The formation of two vortices due to thermal
transpiration is clearly seen. Because of the creep velocity
ux=uc�0 near the walls, the fluid flows in the opposite di-
rection in the center of the channel to balance the mass flow
in the stationary state.

The MCD and WENO schemes, both of second order in
the lattice spacing, give quite identical results, as seen in Fig.
4, which shows the transversal velocity profiles ux�x
=L /2 ,y�. When decreasing the mean gas density n̄, the
Knudsen number becomes noticeable, the thermal transpira-
tion is enhanced and the magnitude of the fluid velocity in
the middle of the box becomes larger in order to balance the
mass flux due to the creep velocity near the walls.

When using the first-order upwind scheme in the bulk
nodes of the 200
20 lattice, the mass flux in the center of
the channel clearly exceeds the opposite flux near the walls
�Fig. 5�a��. This is due to the spurious velocity, which has the
same sign as the density gradient �14�. The gas density is
larger near the left wall of the box because its temperature is
lower than the right one. The velocity profiles in Fig. 5 are

FIG. 2. Two-dimensional box used to simulate thermal transpi-
ration. Temperature increases linearly from Tleft to Tright along the
horizontal walls �between x=L /4 to x=3L /4�.

FIG. 3. Stationary velocity field due to thermal transpiration in a
2D box �200
20 nodes, n̄=108, Tleft=0.90, Tright=1.10�, as recov-
ered using the WENO scheme.
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the superposition of the velocity generated by the thermal
transpiration and the spurious velocity, which plagues LB
simulations. The spurious velocity may be significantly re-
duced when the number of lattice nodes per unit length is
increased, or when using higher-order schemes �12�. Velocity
profiles recovered with the first-order upwind scheme �Fig.
5�a�� strongly depend on the number of nodes N per unit
length, which determines also the lattice spacing �s=L /N.

The results recovered using the second-order schemes �MCD
flux limiter and WENO� remain practically unchanged, ex-
cept near the walls, as seen in Fig. 5�b� �this is not surprising
since the diffuse reflection boundary conditions we use in
our simulations were particularly designed for the first-order
upwind scheme�.

In the stationary regime, the total mass flux

q
x =
L

2
� =

1

h



0

h

�
x =
L

2
,y�ux
L

2
,y�dy �17�

should vanish. Because of numerical errors, we expect the
apparent value of the mass flux q to exhibit a linear depen-
dence on �s when using the first-order upwind scheme. In
the case of flux limiter or WENO schemes, the dependence
of the apparent mass flux q with respect to the lattice spacing
is expected to be parabolic. Figure 6 shows the dependence
ln�q� vs ln��s� as recovered using the three numerical
schemes mentioned above on the three lattices �200
20,
400
40, 1000
100�. The results are in good agreement
with our expectations.

The creep velocity extrapolated in the point �x=1,y=0�
of the bottom wall is found to be linearly dependent on the

FIG. 7. Dependence of creep velocity uc vs wall temperature
gradient dT /ds �n̄=108, MCD scheme, 400
40 nodes�.

FIG. 4. Comparison of velocity profiles ux�y� at x=L /2 recov-
ered on the 200
20 lattice using the MCD and WENO schemes,
for two values of the mean fluid density n̄.

FIG. 5. Velocity profiles ux�y� at x=L /2 recovered with the
upwind and MCD schemes on the 200
20, 400
40, and 1000

100 lattices �n̄=108�.

FIG. 6. Dependence of apparent mass flux q �Eq. �17�� vs lattice
spacing �s, for various numerical schemes used in the lattice Bolt-
zmann model.
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temperature gradient dT /ds �Fig. 7�, as expected according
to Eq. �1�.

V. CONCLUSION

The diffuse reflection boundary conditions for the thermal
finite difference lattice Boltzmann model with multiple
speeds �8,9� were improved in this paper to allow the general
case when the temperature and fluid density may change
along the walls. These conditions account for the thermali-
zation process where the distribution functions of the incom-
ing particles are redistributed in the wall nodes to generate
the corresponding values of the distribution functions of the
outgoing �reflected� particles, which depend on the wall’s
temperature and velocity. The improved model was used to
investigate the main characteristics of the thermal transpira-
tion phenomenon, which occurs in a two-dimensional box
when a tangential temperature gradient is imposed along the
walls: vortex formation, velocity profile, and linear depen-

dence of creep velocity vs wall temperature gradient. This
demonstrates again the capability of the thermal LB model
with diffuse reflection boundary conditions to capture flow
phenomena at non-negligible Knudsen numbers. Because of
their statistical character, feasibility, and noise reduction with
respect to MD and DSMC models, we expect LB models to
become a basic tool for the exploration, design, develop-
ment, and optimization of micro- and nanoscale technolo-
gies.
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